# How does biodiversity benefit agriculture?

Jim Radford Research Centre for Future Landscapes La Trobe University

Presentation to Goulburn Broken CMA, October 20, 2020



RESEARCH CENTRE FOR FUTURE LANDSCAPES



























 Biodiversity – is the diversity of all forms of living organisms. It includes diversity within and among species (including genetic diversity) and diversity within and among ecosystems.





Biotic processes – interactions between individual organisms or species (e.g. predation, herbivory, competition, parasitism, mutualisms) and movement of organisms that facilitate processes













Abiotic processes – processes associated with the physical environment, such as climatic processes, weathering, formation of biophysical habitats, hydrological processes (groundwater and surface water)











Biotic-abiotic processes – interactions between organisms and physical environment (e.g. photosynthesis, disturbance regimes, ecosystem engineers)











- Ecosystem services ecological processes that benefit people
  - crop production, timber, fibre and meat production
  - pollination, seed dispersal, pest control, waste decomposition
  - nitrogen-fixation, nutrient cycling, carbon sequestration



Millennium Ecosystem Assessment (2005)





### **Biodiversity on farms: a three-sided coin?**

### How does biodiversity benefit agriculture?

- Ecosystem services
- Nature @ Work
- Private benefit

## How can farmers increase biodiversity on their farms?

- Wildlife-friendly farming
  - Habitat restoration
    - Public benefit

#### How can farming minimise impacts on biodiversity?

- Regenerative agriculture
- Sustainable agriculture
- Public & private benefit
  - Increased production / profitability
  - Reduced environmental impact
  - Maintain or enhance biodiversity





RESEARCH CENTRE FOR FUTURE LANDSCAPES

# **Biodiversity on farms**

#### Vegetation

- Remnants
- Planted
  - > Shelterbelts
  - Blocks

#### Microbes

- Bacteria
- Fungi

#### Invertebrates

#### Vertebrates









# **Recent reviews**



#### Review

#### Ecosystem service of biological pest control in Australia: the role of non-crop habitats within landscapes



Sarah E. McDonald<sup>1,2</sup> | Rachel Lawrence<sup>1</sup> | Liam Kendall<sup>1</sup> | Romina Rader<sup>1</sup>





### **Productivity benefits of shelterbelts**

- moderating microclimate reducing heat stress through shading; reducing wind-chill through reducing wind speed;
- reducing evapotranspiration and increasing soil moisture through reducing wind speed and temperature in the 'sheltered zone' (up to 20 times height);
- reducing soil loss and spray drift by reducing wind speed;
- increasing competition for water, nutrients and light in the competition zone (1-3 times height of the shelterbelt);
- harbouring predators (invertebrates and vertebrates) of crop and pasture pests (i.e. beneficial insects, natural enemies, biological control);
- harbouring consumers (pests) of crops, pasture and stock;
- harbouring pollinators of crops and vines wasps, bees, birds;
- harbouring consumers of waste products (invertebrates, dung beetles, raptors, scavengers); and
- harbouring decomposers (for nutrient-cycling) (invertebrates, dung beetles, worms).



### Pasture and crop growth (from Baker et al. 2018)

| Publication                          | Windbreak<br>type | Location            | Result                                                     | Conclusion                                                                                                                                         |
|--------------------------------------|-------------------|---------------------|------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|
| Sturrock (1981)                      | Various           | New Zealand         | +35%                                                       | Shelterbelt standards are currently held back by lack of information                                                                               |
| Kort (1988)                          | Tree              | Global <sup>A</sup> | $-8 - \pm 203\%$                                           | 94 out of 97 shelterbelts increased crop yield but<br>varied with species and environment                                                          |
| Bicknell (1991) <sup>B</sup>         | Tree              | Australia (WA)      | 0-30% increase                                             | Increase was species dependent. Lupins 27–20%, oats 0–10%                                                                                          |
| Burke (1991) <sup>B</sup>            | Tree              | Australia (Vic.)    | +0 - 45% (sheltered zone),<br>-3149%<br>(competition zone) | Increased yields observed varied with species and direction of windbreak                                                                           |
| Hawke and<br>Tombleson (1993)        | Trees             | New Zealand         | Overall decrease                                           | Paddock level decrease but 15% increase at peak shelter                                                                                            |
| Sun and<br>Dickinson (1994)          | Tree              | Australia           | +6.7% yield,<br>+11% quality                               | Reduction in competition zone but increase in<br>sheltered zone resulted in overall paddock increase                                               |
| Bird (1998)                          | Tree              | Global              | $+12-60\%^{C}$                                             | Impact hard to detect as effect size is small and<br>variability between and within paddocks<br>overwhelms response                                |
| Nuberg (1998)                        | Various           | Global              | +0 - 47%                                                   | 26 out of 31 studies showed yield increases 3<br>decreased but only measured competition zone.<br>Results highly temporally and spatially variable |
| Bird <i>et al.</i> (2002 <i>a</i> )  | Tree              | Australia (Vic.)    | -28% (competition zone)                                    | Significant reduction in competition zone (0–1TH)<br>but no difference in sheltered zone                                                           |
| Bird <i>et al</i> . (2002 <i>b</i> ) | Artificial        | Australia (Vic.)    | +8 - 10% annually                                          | Small but consistent increase in pasture in sheltered plots. Trend reversed in wet conditions                                                      |
| Nuberg et al. (2002)                 | Tree              | Australia (SA)      | +0 - 81%                                                   | Largest increase in the dry season                                                                                                                 |
| Sudmeyer et al. (2002a)              | Tree              | Australia (WA)      | +0 - 25%                                                   | Increase only observed in sites with high winds                                                                                                    |
| (Sudmeyer and Scott 2002)            | Tree              | Australia (WA)      | -2.8%                                                      | Consistent decrease in competition zone and only<br>small increase in sheltered zone, although<br>increased in dry year                            |
| Cleugh et al. (2002)                 | Various           | Australia           | No response or small increase                              | Overall yield results are small but benefits were<br>enhanced in dry years and when wind was a limiting<br>factor                                  |
| Oliver <i>et al.</i> (2005)          | Tree              | Australia           | -24 - +17%                                                 | Across all paddocks 4 out of 21 had a net positive yield increase, but varied with year                                                            |
| Sudmeyer and Speijers (2007)         | Artificial        | Australia           | Yield decrease<br>within 1.5–3<br>shelter heights          | Shading has a negative impact on crop yield. Variable between species                                                                              |
| Bennell and Verbyla (2008)           | Tree              | Australia           | +0-19%                                                     | Showed strong spatial, temporal and species variation with effects stronger in dry and windy years                                                 |

<sup>A</sup>Reported results from temperate systems only.

<sup>B</sup>Results derived from (Nuberg 1998).

LA IR<sup>IC</sup>Results exclude studies previously reported by Kort (1988).



### Livestock mortality (from Baker et al. 2018)

| Publication                | Windbreak type       | Study     | Location                  | Conclusions                                                                                                |
|----------------------------|----------------------|-----------|---------------------------|------------------------------------------------------------------------------------------------------------|
| Miller (1968)              | Artificial           | Sheep     | New Zealand               | No response in live-weight, although lambs utilised shelter                                                |
| Egan et al. (1972)         | Artificial           | Sheep     | Australia<br>(Victoria)   | 13% increase in early survival. Benefit driven by wind                                                     |
| Lynch and Alexander (1977) | Grass and artificial | Sheep     | Australia<br>(NSW)        | 50% reduction in mortality. Shelter used more in inclement weather                                         |
| Alexander et al. (1980)    | Grass                | Sheep     | Australia<br>(NSW)        | 10-32% survival increase. Driven by wind velocity                                                          |
| Lynch et al. (1980b)       | Grass                | Sheep     | Australia<br>(NSW)        | 50% reduction in mortality                                                                                 |
| Bird et al. (1984)         | Trees                | Sheep     | Australia                 | Shelter reduces lamb mortality by up to 50%                                                                |
| Gregory (1995)             | Trees                | Livestock | New Zealand               | Shelter reduces mortality but effect is most prevalent in young lambs and shorn sheep in inclement weather |
| Pollard (2006)             | Various              | Sheep     | New Zealand,<br>Australia | Wind shelter reduced mortality by 3–13% of single lambs,<br>and 14–37% of twins                            |
| Fisher (2007)              | Various              | Livestock | New Zealand               | Shelter must be provided in situations where the animal would use it                                       |
| Hinch and Brien (2014)     | Various              | Sheep     | Australia                 | Overall shelter reduces mortality rates but more research is required                                      |





### Livestock productivity (from Baker et al. 2018)

| Publication                   | Windbreak<br>type | Animal        | Location                  | Results                                       | Conclusions                                                                                                                                                      |
|-------------------------------|-------------------|---------------|---------------------------|-----------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Gregory (1995)                | Tree              | Sheep, Cattle | Australia,<br>New Zealand | NA (Review)                                   | Shelter minimises the weather conditions<br>which reduce productivity. Benefits<br>may be restricted to extreme conditions.<br>Much of the evidence is anecdotal |
| Bird (2003)                   | Various           | Dairy Cows    | Global                    | NA (Review)                                   | Extreme environmental conditions reduce<br>productivity. Shelter can limit losses<br>but evidence is not conclusive in<br>southern Australia                     |
| Alexander and Lynch (1976)    | Grass             | Sheep         | NSW                       | Lambs with shelter 12 g<br>heavier at 21 days | Shelter protects lambs and gives them<br>early growth advantage                                                                                                  |
| Lynch and Donnelly (1980)     | Artificial        | Sheep         | NSW                       | Shelter increased wool produced per day       | Increase in productivity is linked to<br>increased pasture growth that was<br>observed                                                                           |
| Lynch et al. (1980a)          | Artificial        | Sheep         | NSW                       | Energy intake was 15–21% higher with shelter  | Energy intake is linked to live-weight and<br>wool production                                                                                                    |
| Pollard and Littlejohn (1999) | Artificial        | Sheep         | New Zealand               | No productivity differences                   | Lack of difference between shelter and no-<br>shelter may be due to the lack of<br>extreme conditions                                                            |





### **Case studies**







#### Predation and parasitism of Light Brown Moths in vineyards







Lyndoch (Barossa Valley) Lyndoch (Barossa Valley) Thomson & Hoffmann (2013) Spatial scale of benefits from adjacent woody vegetation on natural enemies within vineyards. *Biological Control*, 64, 57-65. https://doi.org/10.1016/j.biocontrol.2012.09.019.

#### **Complex shelterbelts can reduce pasture pests**



Tsitsilas et al. (2006) Shelterbelts in agricultural landscapes suppress invertebrate pests. Aust J Exp Agric. 46, 1379-1388



RESEARCH CENTRE FOR FUTURE LANDSCAPES



#### Priare (grassland) strips in corn and soy crops (lowa)



Lisa A. Schulte et al. PNAS 2017;114:42:11247-11252









latrobe.edu.au

#### Priare (grassland) strips in corn and soy crops (lowa)



Figure from: Kremen & Merenlender (2018) *Science*, **362**:6020 adapted from: Shulte et al. (2017) *Proc Natl Acad Sci USA*, **114**, 11247-11252.



RESEARCH CENTRE FOR FUTURE LANDSCAPES





#### **Decomposition of carcasses by invertebrates**





RESEARCH CENTRE FOR FUTURE LANDSCAPES Barton & Evans (2017), Insect biodiversity meets ecosystem function: differential effects of habitat and insects on carrion decomposition. *Ecol cartomol*, **42**, 364-374, doi:10.1111/een.12395





#### Birds as pest control in apple orchards in Vic & NSW



Saunders ME, Luck GW (2016) Combining Costs and Benefits of Animal Activities to Assess Net Yield Outcomes in Apple Orchards. PLoS ONE 11(7): e0158618. doi:10.1371/journal.pone.0158618.





#### **Regent parrots and the 'mummy' nuts**



- During harvest, some almonds fail to drop.
- These "mummy" nuts act as reservoirs for fungal and insect pathogens that reduce future crop yields.
- Conventionally, growers remove mummy nuts using a mechanical tree shaker or by hand.
- Regent Parrots also remove mummy nuts.
- Economic benefit of this ecosystem service is greater than loss incurred by birds to harvest by \$25-\$275 / ha, resulting in a positive net return.





# **Marvellous micro-bats**

- Bats are widespread; use a variety of habitats; high diversity of species.
- On Northern Plains, highest levels of activity in riparian vegetation and smaller blocks (< 200 ha) of remnant vegetation within farmland.</li>
- Activity levels in roadside vegetation and scattered trees in paddocks were similar to larger blocks of forest.
- More bats using isolated trees in paddocks than cleared open farmland.
- Females of the Lesser Long-eared Bat recording feeding up to 12 km away from roost sites.
- Bats can consume up to half their body weight in insects per night; feed extensively on a range of pest species, including Rutherglen Bugs.









# **Increase the value of your farm**



10 ha property - 37% cover (increase value by 16%)
100 ha property - 29% cover (increase value by 9%)
1000 ha property - 20% cover (increase value by 5%)
From Polyakov et al. (2014) American J of Ag Economics







# **Biodiversity benefitting agriculture**

| Service Provider                                                                                                    | Facilitating practice                                                    | Ecosystem Service                                                                 | Production gain                                                                                                                                                                          | Magnitude of<br>benefit                                                  | Strength of<br>evidence |
|---------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|-----------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|-------------------------|
| Native vegetation<br>(trees and shrubs)                                                                             | Shelterbelt                                                              | Wind reduction and soil protection                                                | Crop yield gain                                                                                                                                                                          | High in hot, dry and<br>windy conditions<br>Small in mild<br>conditions  | Strong                  |
| Native vegetation<br>(trees and shrubs)                                                                             | Shelterbelt, scattered trees                                             | Temperature regulation                                                            | Increase in wool production, weight<br>gain and lamb survival for sheep and<br>weight gain and milk production in<br>cattle                                                              | Moderate in<br>extreme conditions<br>Small to none in<br>mild conditions | Weak                    |
| Native vegetation<br>(trees, shrubs and<br>grasses)                                                                 | Shelterbelts, grass<br>strips                                            | Intercept spray-drift and nutrient run-off                                        | Increased efficiency of use of irrigation water and agrochemicals                                                                                                                        | Moderate                                                                 | Weak                    |
| Predatory insects,<br>spiders, mites,<br>parasitoid wasps,<br>insectivorous birds<br>and bats, skinks and<br>geckos | Shelterbelts,<br>insectariums, remnant<br>vegetation, scattered<br>trees | Biological control of<br>invertebrate pests<br>(replacing chemical<br>treatments) | Reduced use of pesticides leading to<br>cost saving and improved soil biology<br>(increased productivity); reduced<br>environmental impact; increased<br>consumer appeal (market access) | Crops & pasture –<br>moderate<br>Orchards – small<br>Vineyards – high    | Weak<br>Weak<br>Strong  |





# **Biodiversity benefitting agriculture**

| Service Provider                      | Facilitating practice                                                    | Ecosystem Service                                                                                                                                                                   | Production gain                                                                                                                             | Magnitude of benefit | Strength of<br>evidence |
|---------------------------------------|--------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|----------------------|-------------------------|
| Wetland birds (ibis,<br>ducks, geese) | Wetland reclamation and restoration                                      | Biological control of<br>invertebrate pests                                                                                                                                         | Reduced use of pesticides in cropping and grazing systems; increased yields.                                                                | Moderate             | Weak                    |
| Granivorous birds,<br>ants, rodents   | Shelterbelts, remnant vegetation, native pastures                        | Seed dispersal leading to<br>establishment of native<br>vegetationAssist erosion control by stabilizing<br>the soil, shelter for livestock and<br>crops, and water table management |                                                                                                                                             | Moderate             | Weak                    |
| Raptors, snakes                       | Remnant vegetation,<br>scattered paddock<br>trees                        | Biological control of<br>vertebrate vermin                                                                                                                                          | Reduced losses of crop and pasture<br>to vermin and rabbits; reduced use of<br>rodenticides (cost saving and lower<br>environmental impact) | Small                | Weak                    |
| Insects, nectarivorous<br>birds       | Shelterbelts,<br>insectariums, remnant<br>vegetation, scattered<br>trees | Pollination                                                                                                                                                                         | Essential for seed set and yields of many crops and fruits                                                                                  | High                 | Moderate                |
| Raptors                               | Remnant vegetation,<br>scattered paddock<br>trees                        | Carrion disposal, disease<br>control and displacement<br>of undesirable scavengers<br>that take stock                                                                               | Increased survival, growth and condition of livestock                                                                                       | High                 | Weak                    |





# **Biodiversity benefitting agriculture**

| Service Provider                                       | Facilitating practice                                                           | Ecosystem Service                                                                          | Production gain                                                                                                       | Magnitude of<br>benefit | Strength of evidence |
|--------------------------------------------------------|---------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|-------------------------|----------------------|
| Birds                                                  | Shelterbelts, remnant vegetation                                                | Removal of waste<br>products (e.g. 'mummy<br>nuts') and disease control                    | Replace human or mechanical means<br>of removing waste products which<br>harbour disease / pathogens (cost<br>saving) | Low                     | Moderate             |
| Dung beetles                                           | Inoculation,<br>shelterbelts                                                    | Nutrient absorption /<br>decomposition and<br>disease control                              | Increased soil fertility and pasture<br>growth; increase in weight gain and<br>livestock products                     | High                    | Strong               |
| Soil biota (bacteria,<br>fungi,<br>microinvertebrates) | Low input farming,<br>crop rotations, soil<br>amendments,<br>rotational grazing | Nutrient cycling, soil<br>carbon sequestration, soil<br>conditioning, and<br>decomposition | Increased soil fertility and crop yields<br>/ pasture growth; increase in weight<br>gain and livestock products       | High                    | Weak                 |





### **Biodiversity on farms: a three-sided coin?**

### How does biodiversity benefit agriculture?

- Ecosystem services
- Nature @ Work
- Private benefit

## How can farmers increase biodiversity on their farms?

- Wildlife-friendly farming
  - Habitat restoration
    - Public benefit

#### How can farming minimise impacts on biodiversity?

- Regenerative agriculture
- Sustainable agriculture Public and private benefit
  - Increased production /
    profitability
  - Reduced environmental impact
  - Maintain or enhance biodiversity





E RESEARCH CENTRE FOR FUTURE LANDSCAPES

# **Regenerative agriculture**



Regenerative agriculture describes farming and grazing practices that focus on regenerating topsoil, allowing farmers to maintain crop yields, improve water retention and plant uptake, increase farm profitability, and support biosequestration, among other benefits.



Regenerative agriculture is an ecological approach to farming that allows landscapes to renew themselves. It promotes ethical land stewardship that *revitalises* the natural water cycle, *improves* the carbon cycle and *promotes* biodiversity in soil.

Regenerative Agriculture is a system of farming principles and practices that increases biodiversity, enriches soils, improves watersheds, and enhances ecosystem services.



Regenerative Agriculture aims to capture carbon in soil and aboveground biomass, reversing current global trends of atmospheric accumulation.

At the same time, it offers increased yields, resilience to climate instability, and higher health and vitality for farming and ranching communities.





# **Regenerative agriculture ... yay!**

- Planet Watch, Articles & Columns | O July 28, 2020 | by Willow Haligren

#### Planet Watch: Regenerative agriculture as one answer to planetary crisis



#### THE CONVERSATION

COVID-19 Arts + Culture Business + Economy Cities Education Environment + Energy Health + Medicine Politics + Society Sci



**Boost Biodiversity with Regenerative Agriculture** 

Produce healthy food and manage pests naturally by focusing on soil health and promoting biodiversity. By Jonathan Lundgren | August/September 2020

00000

 $Home \rightarrow Blogs \rightarrow Growing \ Returns \rightarrow These \ farms \ planted \ wildflowers \ to \ attract \ bugs \ to...$ 

These farms planted wildflowers to attract bugs to control pests. And it's working.

#### Sustainability in the Field: Regenerative agriculture and biodiversity in the natural products industry

December 4, 2019 Alissa Marrapodi





How much do we know about the impacts of harvesting? How do we leave the earth and soil better than we found it? How do suppliers maintain a sustainable supply chain when natural disasters and other environmental factors are greatly impacting yields

#### Farmers turn back on harsh chemicals, improve biodiversity and lower costs

Landline / By Pip Courtney and Kerry Staight Posted Sat 18 May 2019 at 6:07am, updated Sat 18 May 2019 at 7:03am







# **Regenerative agriculture ... boo!**

News

#### Why farmers should avoid magic and opt for science

Phil Holmes and Ian McLean 16 Oct 2019, 1:30 p.m.





THE CONVERSATION

Academic rigour, journalistic flair

COVID-19 Arts + Culture Business + Economy Cities Education Environment + Energy Health + Medicine Politics + So

Dishing the dirt: Australia's move to store carbon in soil is a problem for tackling climate change Regenerative agriculture is a 'nonsense' solution to climate change, soil scientist warns

New Zealand Herald | August 14, 2020



"Hidden within the RA (and to an extent cell grazing) approach are the very things that conventional agriculture advocates matching stocking rates to carrying capacity, retaining appropriate levels of ground cover and residual biomass in the landscape. There is nothing mysterious or new about these approaches- it's what all good land managers and grazing scientists have been advocating for decades."

Plant scientists want New Zealand to fact check 'mythology' surrounding regenerative farming

Sally Rae | Otago Daily Times | June 11, 2020









# So what is 'regen ag'?

#### 5 CORE PRINCIPLES OF REGENERATIVE AGRICULTURE







# Radford's definition of regen ag

Regenerative agriculture is a set of practices. Individual farmers select and adopt various practices to include in their customised version of 'regenerative' farming, depending on their particular farming philosophy and the prevailing climatic, edaphic, geographic, economic and social conditions.



# Which practices?

- Minimal (i.e., "low-input farming") or no (i.e., "organic farming") application of synthetic (inorganic) fertilisers, herbicides, pesticides and fungicides;
- Holistic grazing management (Savoury method) / timed / rotational / cell / strategic rest grazing;
- Integrated pest management;
- Incorporating wooded or perennial vegetation elements (e.g. riparian buffer strips, hedgerows, windbreaks, floral strips, biofilters and grass strips) in production areas;
- Conservation tillage (no-till or minimum till), stubble retention and maintaining ground cover;
- Organic amendments (e.g., manure, compost, biochar);
- Diverse crop rotations;
- Innovative cropping methods cover crops, inter-cropping, poly-culture, and pasture-cropping;
- Agroforestry and silvopasture (integration of trees in pasture);





# **Rotational grazing**

EverGraze Project (Badgery & Michalk 2017 Animal Production Science, 57, 1869–1876)

- 21% higher pasture growth
- 22% higher stocking rate
- 20% higher lamb production per hectare
- whole-farm profitability lower due to higher infrastructure costs

Global meta-analysis (McDonald et al. 2019 Journal of Applied Ecology, 56, 2723–2731)



Strategic rest grazing ~ Continuous grazing





### **Organic compost in key farming markets**

| Market sector       | Typical<br>application<br>rates          | Soil moisture                           | Weed loads                                                         | Soil structure                                           | Yields                                                            |
|---------------------|------------------------------------------|-----------------------------------------|--------------------------------------------------------------------|----------------------------------------------------------|-------------------------------------------------------------------|
| Market gardens      | Variable – up<br>to 160 t/ha             | Significant<br>improvements<br>recorded | Not reported                                                       | Small<br>improvements<br>at high<br>application<br>rates | Decreases<br>more common<br>than increases                        |
| Viticulture         | Not reported                             | Consistent<br>improvements<br>reported  | Consistently<br>suppresses<br>weeds                                | Speculated but little evidence                           | Increase<br>yields                                                |
| Horticulture        | Not reported                             | Consistent<br>improvements<br>reported  | Consistently<br>suppresses<br>weeds                                | Not reported                                             | Inconsistent:<br>significant for<br>some varieties<br>and seasons |
| Broad-acre cropping | Commonly 10-<br>40 t/ha up to<br>90 t/ha | Consistent<br>improvements<br>reported  | Likely have<br>little effect due<br>to low<br>application<br>rates | Speculated but<br>little evidence                        | Consistent<br>increases<br>reported                               |
| Grazing             | Generally less<br>than 10 t/ha           | Insufficient<br>evidence                | Likely have<br>little effect due<br>to low<br>application<br>rates | Insufficient<br>evidence                                 | Increases in<br>pasture dry<br>matter due to<br>fertiliser effect |

Engleitner, S. (2015). *Review of past recycled organic field trials in Victoria* (1995–2013). Sustainability Victoria.





### **Reducing insecticide application**



RESEARCH CENTRE FOR FUTURE LANDSCAPES



#### More pests but similar yields

• Insecticide use did reduce the abundance of many pest species

#### BUT

- Damage caused by pests not significantly higher in control and low input sites
- Yields not significantly different across treatments
- None of the insecticide inputs provided an economically justifiable yield gain.



Macfadyen et al. (2014) Reducing Insecticide Use in Broad-Acre Grains Production: An Australian Study. PLoS ONE 9(2)



RESEARCH CENTRE FOR FUTURE LANDSCAPES



### **Biodiversity on farms: a three-sided coin?**

### How does biodiversity benefit agriculture?

- Ecosystem services
- Nature @ Work
- Private benefit

## How can farmers increase biodiversity on their farms?

- Wildlife-friendly farming
  - Habitat restoration
    - Public benefit

#### How can farming minimise impacts on biodiversity?

- Regenerative agriculture
- Sustainable agriculture
- Public and private benefit
  - Increased production / profitability
  - Reduced environmental impact
  - Maintain or enhance biodiversity







# What you can do to enhance wildlife habitat on your farm?

What do I have?

What should be here?

What's missing?

How can I increase productivity?

How can I support 'bottom-up' processes?

How can I increase connectivity?





# What you can do to enhance wildlife habitat on your farm?

- 1. Maintain all remnant vegetation
- 2. Protect and retain scattered paddock trees
- 3. Reduce inputs and improve your soil
- 4. Control feral predators and exotic herbivores (fence off critical areas)
- 5. Increase native veg through replanting consider climate change, connectivity, pollinators, nectar, grasses
- 6. Leave fallen timber and coarse woody debris
- 7. Install nest-boxes and particular habitat features (native bee hotels, re-snagging, re-logging, re-rocking)
- 8. Reduce size of paddocks and increase heterogeneity





#### Frameworks for alternative agricultural paradigms



Intensity of land-use (% set aside from production)





# Thank you for listening

#### **Questions?**

<u>Acknowledgements</u> Karen Bullock-Brisbane & Jenny Wilson (GB CMA) for commissioning literature review

For guidance and discussion Andrew Bennett Angie Haslem Lyn Kelson Sue Ogilvy And many others ...



RESEARCH CENTRE FOR FUTURE LANDSCAPES

